Electroweak Measurements from the Tevatron

La Thuile 2009

Eva Halkiadakis Rutgers University

For the CDF and DØ Collaborations

W & Z Bosons

- EWK measurements provide:
 - high precision tests of the SM
 - indirect knowledge about the Higgs boson or possible new physics
- Tevatron is a Vector Boson factory!

Events produced in ~1fb⁻¹ : (ℓ = e, μ)

≈ 5,000,000	$W o \ell \nu$
≈ 500,000	$Z \rightarrow \ell \ell$
≈ 32,000	$W\gamma \rightarrow \ell \nu \gamma$
≈ 8000	$Z\gamma \rightarrow \ell \ell \gamma$
≈ 4000	WW/WZ →ℓνjj
≈ 600	$WW \to \ell \nu \ell \nu$
≈ 50	$WZ \rightarrow \ell \nu \ell \ell$
≈ 40	$ZZ \rightarrow \ell \ell \nu \nu$

Single Boson Production

≈ 6

Precision measurement W mass

 $ZZ \rightarrow \ell \ell \ell \ell$

- Higgs mass constraint
- W production cross section asymmetry
 - Parton distributions inside proton

- Diboson Production
 - Z_Y production
 - First measurement of Zγ→ννγ final state at Tevatron
 - Observation of ZZ
 - Limits on *anomalous* trilinear gauge couplings

W Mass

PRL 99, 151801 (2007). PRD 77, 112001 (2008).

- W mass information contained in location of Jacobian edge in m_T —
- Fit to transverse mass, momentum and missing energy distributions in e and μ channels and combine
- CDF 200pb⁻¹ result is the world's most precise single measurement

$$m_W = 80413 \pm 34_{stat} \pm 34_{syst} MeV$$

- Total uncertainty 48 MeV
- Uncertainty on world average reduced ~15% (29 to 25 MeV)
- Large statistical component
- Scale partially with statistics
- External input → new PDF fits

Improvement in PDF uncertainties will ___ reduce total error on W mass → e.g. W charge asymmetry measurement

Syst. + Stat. uncertainties (m_T)

CDF II preliminary			L = 200 pb ⁻¹
m _⊤ Uncertainty [MeV] E	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	9	9	9
Recoil Resolution	7	7	7
u _{II} Efficiency	3	1	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
p _⊤ (W)	3	3	3
PDF	41	11	11
QED	11	12	11
Total Systematic	39	27	26
Statistical	48	54	0
Total	62	60	26

W Mass Projections

Projection from previous Tevatron measurements

Expect ΔM_W < 25 MeV with ~2 fb⁻¹ collected and being analysed

Studies in progress confirm that most systematics scale with luminosity as expected

Expected statistical uncertainties

$W \rightarrow \mu \nu$	$\Delta \mathbf{m}_{W}^{stat}$	
published (200pb ⁻¹)	54 MeV/c²	
expected (2.3fb ⁻¹)	16 MeV/c ²	
fit (2.3fb ⁻¹)	16 MeV/c²	
W → eν	$\Delta \mathbf{m}_{W}^{stat}$	
published (200pb ⁻¹)	48 MeV/c²	
expected (2.4fb ⁻¹)	14 MeV/c²	
fit (2.4fb ⁻¹)	15 MeV/c²	

W Production Charge Asymmetry

At the Tevatron, W^{\pm} are produced primarily by:

u quark carries higher fraction of p momentum!

←anti-proton direction proton direction→

W Charge Asymmetry:

$$A(y_W) = \frac{d\sigma_+/dy_W - d\sigma_-/dy_W}{d\sigma_+/dy_W + d\sigma_-/dy_W}$$

$$A_l(\eta) = \frac{d\sigma(l^+)/d\eta - d\sigma(l^-)/d\eta}{d\sigma(l^+)/d\eta + d\sigma(l^-)/d\eta}$$
W production charge asymmetry

Measurement of the W charge asymmetry constrains PDF's of the proton! (sensitive to d(x)/u(x) ratio)

<u>Lepton charge asymmetry</u> is a convolution of both the *W* charge asymmetry and V-A *W* decay structure

- Results in "turn-over" at high lηl
- W+'s produced boosted in proton direction and polarized in the antiproton direction

W charge asymmetry does not suffer from "turn-over" effect

Lepton Charge Asymmetry

- Traditionally we measure lepton charge asymmetry
 - leptonic W decay involves $v \rightarrow P_z^v$ is unmeasured
- $A_{l}(\eta) = \frac{d\sigma(l^{+})/d\eta d\sigma(l^{-})/d\eta}{d\sigma(l^{+})/d\eta + d\sigma(l^{-})/d\eta}$

- Difficult to measure W rapidity directly
- Charge identification is crucial for this measurement.
 - Measure charge fake rate using Z →e+e- data sample.
 - Charge misidentification rate ranges from 0.2% in central region to 0.9% in forward region (with absolute uncertainty from 0.1% 2.6% depending on η)

The measured charge asymmetry tends to be lower than the theoretical predictions for high $l\eta_e l$.

CTEQ6 NLO:P. M. Nadolsky et al., Phys. Rev. D 78, 013004 (2008). CTEQ6 error PDFs: D. Stump et al., J. High Energy Phys. 10 (2003) 046. MRST06NLO: A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Phys. Lett. B 604, 61 (2004).

Lepton Charge Asymmetry

- Also measure the asymmetry in two bins of electron E_T
 - 25 < E_T < 35 GeV and E_T > 35 GeV
- For a given η_e, the two E_T regions probe different ranges of y_W
 - Allow a finer probe of the x dependence
 - For higher E_T, electron direction closer to W direction
 - Improve sensitivity to the PDFs
- Agreement in the low E_T bin much better than in the high E_T bin
 - Comparisons with CDF ongoing
- Precision better than current CTEQ6.6 error band

W Charge Asymmetry

$$A(y_{W}) = \frac{d\sigma_{+} / dy_{W} - d\sigma_{-} / dy_{W}}{d\sigma_{+} / dy_{W} + d\sigma_{-} / dy_{W}}$$

How to reconstruct yw?

$$y_{W} = \frac{1}{2} \ln \left(\frac{E - P_{z}}{E + P_{z}} \right) \qquad \overrightarrow{P_{z}^{W}} = \overrightarrow{P_{z}^{l}} + \overrightarrow{P_{z}^{v}}$$

$$can't measure !!!$$

New technique by CDF:

- Use W mass constraint to reconstruct neutrino P_z $M_W^2 = (E_l + E_v)^2 (\overrightarrow{P_l} + \overrightarrow{P_v})^2$

- Two possible y_w solutions
- Each solution receives a weight probability according to:
 - V-A decay structure
 - Depends on p_T^W ,y_W , θ* (lepton angle in W rest frame)
 - W differential cross-section: $\sigma(y_w)$
- Iterate, since $\sigma(y_w)$ depends on $A(y_w)$

First Direct Measurement of A(y_W)

- First direct measurement of W charge asymmetry
 - Despite additional complication of multiple solutions, it works!
 - Systematics <1.5 % for $|y_w| > 2.0$
 - Appears that it will have impact on d/u of proton
- Compare to CTEQ6M (NLO) and MRST2006 (NNLO) PDFs and their uncertainties
- Both experiments working with PDF fitting groups to incorporate results

NNLO Prediction: C. Anastasiou et al., Phys. Rev. D69, 094008 (2004)

MRST 2006 PDFs: A. D. Martin et al., hep-ph/0706.

0459, Eur. Phys. J., C28, 455 (2003)

CTEQ6M PDFs: J. Pumplin et al., hep-ph/0201195

Diboson Production

t-channel: Fermion-Boson Couplings

p W,Z q W,Z

s-channel: Boson-Boson Couplings

Why study diboson Production?

- Relationships between the masses and couplings of the W and Z
- Sensitive to new physics in TGC (trilinear gauge couplings)
 - Tevatron complementary to LEP
 - Explores higher center-of-mass energy than LEP
 - Different combinations of couplings
- Backgrounds to "new physics": Higgs, top, SUSY ...
 - See "Low Mass SM Higgs at Tevatron" talk by Artur Apresyan (Friday morning)

Neutral Triple Gauge Couplings

Boson-Boson Couplings:

Not permitted in SM: ZZγ, Zγγ, ZZZ

I will focus on this today

Describe these anomalous couplings in terms of CP violating and CP conserving parameters. Usually described by a form factor to ensure unitarity, assuming a value of Λ (energy scale for new physics).

CP violating

CP conserving

Z_Y Production

- SM predicts two tree-level diagrams via ISR and FSR radiation
- Zγγ and ZZγ couplings vanish at tree-level in the SM

- eeγ and μμγ channels extensively studied at Tevatron
- Today: first measurement of Zγ→ννγ final state at Tevatron
 - Very challenging
 - Higher acceptance
 - Higher BR to vv than to \(\ell \ell \)
 - No FSR in ννγ final state

$Z\gamma \rightarrow \ell \ell \gamma$

Two isolated high p_T leptons

FSR

- A photon with $E_{T}\gamma > 7$ GeV
- $M_{pp} > 40 \text{ GeV (CDF)}$
- $M_{\ell\ell} > 30 \text{ GeV } (D\emptyset)$

Backgrounds: Z+jets, γ+jets

Experiment	Luminosity	#events eeγ (μμγ)	Measured σ xBR (pb)	NLO Prediction (pb)
DØ [PLB 653, 378 (2007)]	1.1 fb-1	453 (515)	4.96 ± 0.30 (stat.+syst.) ± 0.30 (lumi.)	4.7 ± 0.2
CDF (ISR)	1.1 fb-1 (ee) 2.0 fb-1(μμ)	154 (119)	1.2 ± 0.1(stat.) ± 0.2(syst.) ± 0.1(lumi.)	1.2 ± 0.1pb
CDF (FSR)	1.1 fb-1 (ee) 2.0 fb-1(μμ)	236 (269)	3.4 ± 0.2(stat.) ± 0.2(syst.) ± 0.2(lumi.)	3.3 ± 0.3pb
	2.0 fb-1(μμ)		$0.2(syst.) \pm 0.2(luml.)$	

$Z\gamma \rightarrow \nu \nu \gamma$

- $\mathcal{L} = 3.6 \text{ fb}^{-1}$
- $E_T \gamma > 90 \text{ GeV}$

- MET > 70 GeV
- No jets with E_T>15GeV
- No high p_⊤ tracks
- require $|z_{EM} z_{V}| < 10 \text{ cm}$
 - Removes cosmic or halo muon brem
 - Z_{EM} assumes EM shower initiated by photons pointing back to z axis
 - Z_V reconstructed event vertex

	Number of events
$W \rightarrow ev$	$9.67 \pm 0.30 \text{ (stat.)} \pm 0.48 \text{ (syst.)}$
non – collision	$5.33 \pm 0.39 \text{ (stat.)} \pm 1.91 \text{ (syst.)}$
W/Z + jet	1.37 ± 0.26 (stat.) ± 0.91 (syst.)
$W\gamma$	$0.90 \pm 0.07 \text{ (stat.)} \pm 0.12 \text{ (syst.)}$
Total background	$17.3 \pm 0.6 \text{ (stat.)} \pm 2.3$
$N_{ u u\gamma}^{ m SM}$	33.7 ± 3.4
N_{obs}	51

Beam and cosmic ray initiated events can be distinguished by the signature seen in the tracking system. In a cosmic ray event, a single vertical track (as evidenced by the blue dots) indicates the passage of a single cosmic ray muon.

$$\sigma \times Br(Z \rightarrow vv) =$$
 32 ± 9 (stat+syst) ± 2 (lumi) fb

5.1σ significance First observation of Zγ→ννγ at Tevatron!

In agreement with NLO prediction: 39 ± 4 fb

Submitted to PRL arXiv.org:0902.2157

Zy Anomalous Couplings

- Data are consistent with the SM prediction
- Use photon E_T spectrum to set limits on anomalous ZZγ, Zγγ couplings

Zγ→ννγ Channel

Zγ→ℓℓγ Channels

15

Zy Anomalous Couplings

 $-0.049 < h_3^{\gamma} < 0.008$ $-0.002 < h_4^{\gamma} < 0.034$ $-0.20 < h_3^{Z} < 0.07$ $-0.05 < h_4^{Z} < 0.12$

LEP does not scale couplings with the form-factor, which makes direct comparison more complex

ZZ Production

- Very small cross-section
 - NLO cross section: 1.4 ± 0.1 pb
 Campbell, Ellis, PRD 60 (1999) 113006
- Two viable modes (assume e and μ leptons):
 - - Small branching ratio
 - Clean Sample
 - llvv: ~3.0%
 - 6 times large branching ratio
 - Large Backgrounds (WW, WZ, Drell-Yan)
- Strategy: both DØ and CDF consider and combine both decay modes

ZZ Production

First measurement!

 $\mathcal{L} = 1.9 \text{fb}^{-1} \text{ PRL100, 201801 (2008)}$

Observation!

 $\mathcal{L} = 2.7 \text{fb}^{-1}$ PRL 101, 171803 (2008)

Observed results

Channel	$\ell\ell\nu\nu$	llll	Combined
P-value	0.12	1.1×10 ⁻⁵	5.1×10 ⁻⁶
Significance	1.2σ	4.2σ	4.4σ

Expected 50/50 chance of seeing 5σ

 $\sigma(ZZ) = 1.4^{+0.7}_{-0.6} \text{pb}$

Channel	$\ell\ell\nu\nu$	lll	Combined
	(2.7fb ⁻¹)	(1.7fb ⁻¹)	(also with 1fb ⁻¹ 4 ℓ measurement)
P-value	0.42x10 ⁻²	4.3 x 10 ⁻⁸	6.2 x 10 ⁻⁹
Significance	2.6σ	5.3σ	5.7σ
(expected)	(2.0σ)	(3.7σ)	(5.2σ)

P-value:
Probability for
data to be
described by
background-only
hypothesis

 $\sigma(ZZ) = 1.60 \pm 0.65 \text{pb}$

ZZ Candidates

eevv event

4μ event

ZZ Anomalous Couplings

95%CL on CP violating and conserving parameters

events/10 GeV

LEP

spectrum in high

 $p_T(Z)$ region

 $-0.17 < f_4^{\gamma} < 0.19$ $-0.32 < f_5^{\gamma} < 0.36$ $-0.30 < f_4^{Z} < 0.30$ $-0.34 < f_5^{Z} < 0.38$

Expected AGC signal from $f_4^Z = 0.3$ (LEP Limit)

20

Conclusions

- Currently, CDF measurement of the W boson mass gives the single most precise for one experiment
 - Upcoming precision W mass measurements will further test the SM and provide new indirect limits on Higgs mass
- New precision measurements of the W charge asymmetry testing accuracy of our knowledge of the proton structure
- Measuring processes with cross sections similar to Higgs!
 - First observation of $Z_{\gamma} \rightarrow \nu \nu \gamma$ at Tevatron!
 - ZZ production has been observed at the Tevatron!
 - New limits set on anomalous couplings for ZZZ / ZZγ / Zγγ production
 - We are now measuring diboson production and couplings with greater and greater precision

CDF: http://www-cdf.fnal.gov/physics/physics.html

DØ: http://www-d0.fnal.gov/Run2Physics/WWW/results.htm